
Physique II – Thermodynamique

Solutions 7

Problème I Cycle du moteur diesel

1. Selon les propriétés d’une transformation adiabatique, on peut exprimer p2 en fonction de

p1,

p2V
γ
2 = p1V

γ
1 ⇒ p2 = p1

(V1

V2

)γ

En plus, p3 = p2 (processus isobare) et V4 = V1 (processus isochore). Donc,

p4V
γ
4 = p3V

γ
3 ⇒ p4 = p3

(V3

V4

)γ
= p2

(V3

V1

)γ
= p1

(V3

V2

)γ

2. La variation de l’entropie ∆S est donné par l’expression ∆S =
∫

1
T δQ. Donc,

∆S12 =

∫ 2

1

1

T
δQ =

∫ 2

1

0

T
= 0,

∆S23 =

∫ 3

2

δQ

T
=

∫ T3

T2

dH

T
=

∫ T3

T2

nCp, mdT

T
= nCp,m ln

(T3

T2

)
= nCp,m ln

(V3

V2

)
,

∆S34 =

∫ 4

3

δQ

T
=

∫ 4

3

0

T
= 0, et

∆S41 =

∫ 1

4

δQ

T
=

∫ T1

T4

dU

T
=

∫ T1

T4

nCV, mdT

T
= nCV,m ln

(T1

T4

)
= nCV,m ln

(p1
p4

)
= nCV,m ln

(V3

V2

)−γ
= −nγCV,m ln

(V3

V2

)
= −nCp,m ln

(V3

V2

)
.

Ce qui implique que ∆S = ∆S12 + ∆S23 + ∆S34 + ∆S41 = 0 qui découle du fait que

l’entropie est un fonction d’état.

3. La variation de l’énergie interne est dans tous les cas donnés par :

∆Uif =

∫ f

i
nCV, mdT = nCV, m(Tf − Ti) =

CV, m

R
(pfVf − piVi)
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Donc,

∆U12 =
CV, m

R
(p2V2 − p1V1) =

CV, m

R
p1

((V1

V2

)γ
V2 − V1

)
,

∆U23 =
CV, m

R
(p3V3 − p2V2) =

CV, m

R
p1

(V1

V2

)γ
(V3 − V2),

∆U34 =
CV, m

R
(p4V4 − p3V3) =

CV, m

R
p1

((V3

V2

)γ
V1 −

(V1

V2

)γ
V3

)
, et

∆U41 =
CV, m

R
(p1V1 − p4V4) =

CV, m

R
p1

(
V1 −

(V3

V2

)γ
V1

)
.

Ce qui implique que ∆U = ∆U12 + ∆U23 + ∆U34 + ∆U41 = 0 qui découle du fait que

l’énergie intèrne est un fonction d’état.

Problème II Cylindre calorifugé (Examen 2016)

1. Le système est le suivant :

On passe (p0, V0, T0) à (p1, V1, T1) = (p1, V0, 3T0)

p1V1 = nRT1 ⇒ p1 =
nRT1

V1
= 3p0

Q = Cv∆T = Cv (3T0 − T0) = 2CvT0

soit

Q = 2
nR

γ − 1
T0 = 2

p0V0

γ − 1

2. Le piston est lâché brutalement ⇒ le système ne passe pas par une succession d’états

d’équilibre ⇒ la transformation est irréversible.
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3. La transformation est adiabatique irréversible ⇒ la loi de Laplace pV γ = cst ne marche

pas!

Mais on sait que durant toute la transformation p2 = p0 = pext

Comme on a une transformation adiabatique : Q = 0.

Pour un gaz parfait : ∆U = Cv∆T = Cv (T2 − T1).

De plus ∆U = Q+W = W = −pext∆V = −p0 (V2 − V1).

On a donc Cv (T2 − T1) = −p0 (V2 − V1)

et de plus p0V2 = p2V2 = nRT2 et CvT2 − CvT1 = −nRT2 + p0V1.

(Cv + nR)T2 = CvT1 + p0V1 = 3CvT0 + nRT0 = T0 (3Cv + nR)

d’où :

T2 = T0
3Cv + nR

Cv + nR
= T0

3 nR
γ−1 + nR

nR
γ−1 + nR

= T0
3 + γ − 1

1 + γ − 1

soit finalement :

T2 = T0
γ + 2

γ
⇒ V2 = V0

γ + 2

γ

4. Les points sur le diagramme (p, V ) sont représentés ci-dessous (graphique qualitatif) :

Note importante : l’adiabatique réversible qui passe par l’état 1 coupe p0 à une température

inférieure à T2 car la transformation 1 → 2 est irréversible ⇒ entropie.
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5. Création d’entropie lors de la transformation 1 → 2 :

∆S1→2 = S2 − S1 = Scrée + Séchangée︸ ︷︷ ︸
0 (adiabatique)

Pour calculer ∆S1→2, comme il s’agit d’une fonction d’état sa valeur ne dépend pas du

chemin entre les états 1 et 2. On choisit donc une transformation réversible allant de 1 et

2 et passant par 3 (voir figure) en suivant une adiabatique réversible puis une isotherme

réversible :

∆S1→2 = ∆S1→3︸ ︷︷ ︸
0 (adiabatique)

+ ∆S3→2︸ ︷︷ ︸
∆Sisotherme=

Q3→2
T2

Q3→2 = −W3→2 =

∫ 2

3
pdV =

∫ 2

3
nRT2

dV

V
= nRT2 ln

V2

V3

∆S3→2 = nR ln
V2

V3

T1V
γ−1
1 = T3V

γ−1
3 =⇒ V3 = V1

(
T1

T3

) 1
γ−1

Problème III Cycle calorifique

On a que CV ,m = cR et Cp,m = (c+ 1)R.

1. A l’aide de la condition d’adiabacité, le volume V2 s’écrit :

V2 = V1

(
p1
p2

) 1
γ

Également, la transformation 2→3 est une isobare :

V2 = V3
T2

T3

2. La chaleur échangée durant une compression isobare s’écrit,

Q23 = ∆H23 =

∫ H3

H2

dH = (c+ 1)nR

∫ T3

T2

dT = (c+ 1)nR (T3 − T2)

3. La variation d’entropie durant la compression isobare est donnée par,

∆S23 =

∫ S3

S2

dS = (c+ 1)nR

∫ T3

T2

dT

T
= (c+ 1)nR ln

(
T3

T2

)
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Problème IV Cycle de Lenoir

1. (a) Pour le diagramme (p, V ) on a :

• Pour le processus isochore, V = V1 = V2 = cste.

• Pour le processus adiabatique, p(V ) = cste /V γ où γ > 1 et cste = p2V
γ
2 = p3V

γ
3 .

• Pour le processus isobare, p(V ) = p3 = p1 = cste.

(b) Pour le diagramme (T, S) on a :

• Pour le processus isochore, T (S) = T1 exp ((S − S1) /cnR).

• Pour le processus adiabatique, S = S2 = S3 = cste.

• Pour le processus isobare,T (S) = T1 exp ((S − S1) /(c+ 1)nR).
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2. Le travail effectué durant le processus isochore s’annule et donc :

∆S12 = cnR ln

(
T2

T1

)

3. La chaleur échangée durant le processus isochore s’écrit,

Q12 = ∆U12 =

∫ U2

U1

dU = cnR

∫ T2

T1

dT = cnR (T2 − T1)

Ainsi,

T2 = T1 +
Q12

cnR

4. A l’aide de l’équation d’état du gaz parfait, la pression p2 est donnée.

p2 =
nRT2

V2
=

nR

V1

(
T1 +

Q12

cnR

)
= p1 +

Q12

cV1

5. Pour un processus adiabatique,

p3 = p2

(
V2

V3

)γ

6. Le travail effectué durant le processus adiabatique est donné par,

W23 = ∆U23 = cnR

∫ T3

T2

dT = cnR (T3 − T2)

et il n’y a pas de chaleur échangée,

Q23 =

∫ 3

2
TdS = 0

7. Le travail effectué durant un processus isobare peut s’écrire,

W31 = −
∫ 1

3
pdV = −p1

∫ V1

V3

dV = −p1 (V1 − V3) = nR (T3 − T1)

et la chaleur échangée est donnée par,

Q31 = ∆H31 =

∫ H1

H3

dH = (c+ 1)nR

∫ T1

T3

dT = (c+ 1)nR (T1 − T3)

Ce transfert de chaleur n’a pas lieu durant un processus isotherme. Ainsi, il ne peut pas

être décrit par un transfert de chaleur à un réservoir thermique.
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8. A l’aide des résultats obtenus ci-dessus et compte tenu du coefficient γ = (c + 1)/c, le

rendement ηL du cycle de Lenoir s’écrit,

ηL = −W23 +W31

Q12
=

c (T2 − T3) + (T1 − T3)

c (T2 − T1)

=
T1 + cT2 − (c+ 1)T3

c (T2 − T1)
=

(γ − 1)T1 + T2 − γT3

T2 − T1

ηL = 1− γ
T3 − T1

T2 − T1

Problème V Cycle de Rankine

1. Pour les processus isobares, p(V ) = p1 = p2 = cste ou p(V ) = p3 = p4 = cste. Pour

les processus adiabatiques, p(V ) = cste /V γ ou γ > 1 et cste = p1V
γ
1 = p4V

γ
4 ou cste =

p2V
γ
2 = p3V

γ
3 .

2. Les travaux effectués durant la détente isobare et la compression isobare sont donnés par,

W12 = −
∫ 2

1
pdV = −p1

∫ V2

V1

dV = −p1 (V2 − V1) = −nR (T2 − T1)

W34 = −
∫ 4

3
pdV = −p3

∫ V1

V3

dV = −p3 (V4 − V3) = −nR (T4 − T3)

Les travaux effectués durant la détente adiabatique et la compression adiabatique sont

donnés par,

W23 = ∆U23 = cnR

∫ T3

T2

dT = cnR (T3 − T2)

W41 = ∆U41 = cnR

∫ T4

T1

dT = cnR (T1 − T4)
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Le travail effectué par cycle est donné par,

W = W12 +W23 +W34 +W41

= −nR(T2 − T1)− nR(T4 − T3) + cnR(T3 − T2) + cnR(T1 − T4)

= Rn(c+ 1)(T1 − T2 + T3 − T4)

3. La chaleur échangée durant la détente isobare est donnée par,

Q+ = Q12 = ∆H12 =

∫ H2

H1

dH = (c+ 1)nR

∫ T2

T1

dT = (c+ 1)nR (T2 − T1)

4. A l’aide de la définition du rendement, on obtient,

ηR = − W

Q+
= − W

Q12
= −T1 − T2 + T3 − T4

T2 − T1
= 1− T3 − T4

T2 − T1

Problème VI Thermalisation et réversibilité

1. Une transformation est dite réversible quand le système et l’environnement extérieur peu-

vent être ramenés à l’état initial en échangeant un travail mécanique -W et une quantité

de chaleur -Q, où W et Q sont le travail et la quantité de chaleur échangées lors du passage

de l’état initial à l’état final.

2. Pour passer de l’état 1 (température T1) à l’état 2 (température T2) le travail échangé

est W = 0 et la quantité de chaleur échangée est Q. Pour la transformation inverse,

c’est-à-dire pour passer de l’état 2 (température T2) à l’état 1 (température T1), on peut

imaginer de remettre le corps en contact avec la source chaude T1. Le travail et la chaleur

échangées sont W = 0 et −Q. La transformation est tout de même irréversible : pour

qu’elle soit réversible, aussi bien le système que l’environnement extérieur doivent pouvoir

être ramenés à l’état initial. Dans ce cas, le corps revient à l’état initial mais pas les

sources chaudes, car celle à T1 a échangée une quantité de chaleur −Q et celle à T2 une

quantité de chaleur Q.

3. Les deux transformations isochores sont obtenues par thermalisation avec une source

chaude et une froide. Dans le cas sans régénérateur on est dans le même cas que la

question 2 et le cycle n’est donc pas réversible. Si par contre on a un régénérateur, les

chaleurs échangées lors des isochores se compensent et le cycle est réversible.
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Problème VII Coordonnées (T, S)

1. Pour répondre à cette question, il nous faut utiliser une fonction auxiliaire. L’énoncé

suggère d’utiliser p et T comme variables. C’est donc l’enthalpie H qui est la "bonne"

fonction :

dH = T dS + V dp = Cp dT ( gaz parfait )

Il vient alors :

dS =
Cp dT

T
− V dp

T

et comme pV = nRT ⇒ V
T = nR

p ,

dS = Cp
dT

T
− nR

dp

p

Ainsi,

∆S1→2 = Cp ln
T2

T1
− nR ln

p2
p1

2. S est une fonction d’état, donc ne dépend pas du chemin suivi :

∆Sirr
1→2 = ∆Srev

1→2 = Cp ln
T2

T1
− nR ln

p2
p1

3. Pour une isobare, p = cste = p1, donc (p1, T1) devient (p1, T ).

∆S = S (p1, T )− S1 = Cp ln
T

T1
− 0

On cherche T en fonction de S pour p1 fixe (isobare en coordonnées (T, S) )

ln
T

T1
=

S − S1

Cp
⇒ T = T1e

S−S1
Cp

C’est une fonction exponentielle...

On repart de l’expression de dS :

dS = Cp
dT

T
− nR

dp

p
isobare ⇒ dp = 0

dS = Cp
dT

T
⇒

(
dT

dS

)
isob

=
T

Cp

dT
dS est la pente de l’isobare. Pour T donné, elle est la même quel que soit p. A T donnée,

toutes les isobares ont la même pente. Les isobares peuvent se déduire les unes des autres

par translation horizontale.
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4. Pour T = cst,∆S1→2 = −nR ln p2
p1

, donc si p2 > p1,∆S1→2 < 0. Dans ces conditions,

l’isobare p2 est à gauche de l’isobare p1 . . .

5. Pour une adiabatique réversible, ∆S = 0. Il s’agit d’une verticale en coordonnées (T, S)
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6. Nous avons maintenant une transformation adiabatique irréversible, avec ∆Sirr > 0.

L’état final sera différent : p2 sera identique, mais la température sera T ′
2. Comme

∆Sirr > 0, le point 2’ est à droite, donc T ′
2 > T2. Par contre, on ne peut pas, pour

une transformation irréversible, en toute rigueur, tracer la ligne qui joint les deux points

indiquant la situation initiale et finale. En effet, le système ne passe pas par une série

d’états d’équilibre, les variables d’état telles que la température ne sont pas définies.


